
Abstract

This paper describes the limit matrix calculations done in the anp
software developed by William Adams. A brief description of the algo-
rithms used is given, and then a closer look at how the calculations handle
a couple of examples is given.

1 Introduction

The anp software provides a low-level library to perform anp calculations, and
a gui to facilitate the development of complex networks. In the process of
synthesis of alternatives, limit matrix calculations need to be performed. In
the case of a sufficiently connected network, this calculation is relatively easy
1. However, in the insufficiently connected network case (e.g. a hierarchy) the
calculation is much more difficult. Let us here define what an insufficiently
connected network is:

Insufficiently connected network This is a network which has sinks. Sinks
are nodes which are not with respect to nodes for any comparisons. Or
using the standard of with respect to nodes being from nodes, a sink is
a node which connects to nobody (although he may connect from many).
These nodes can be identified as columns in the super matrix which are
completely zero.

In this case, larger and larger powers of the matrix simply vanish, and we are
left with no information. One way to fix this is to replace those zero columns by
the same column from the identity matrix (i.e. if column 7 of a 12x12 matrix is
zero, replace it by column 7 of a 12x12 identity matrix). We call these columns
identity columns. There are many other ways to remedy this situation, as we
shall see shortly.

2 Technical Description

Here we shall get a complete look at the calculations, and how they are actually
carried out in the c code. We have three classes of calculations:

Vargas’s calculation I give this a separate section because it is neither out of
date, nor current. I do not believe this calculation method to be necessary,
however, it is included for completeness.

Out of date These are older calculation methods with many flaws in them.
Although they given fun results from time to time, they are never to be
trusted. You should only use these for play purposes.

1There is, however, the multiple unit eigenvalue case. Although this case should be handled
in the same way as any other sufficiently connected network, there is some discussion about
this. As a result, a more complicated formula is included in the software which implements
Luis Vargas’s adaptation of the standard formula for this case. This formula may be turned
off by setting a global variable (or in limit matrix options in the gui .

1



Current These calculation models work reasonably well in all instances. They
should handle sufficiently connected networks, and hierarchies correctly.
However these methods may disagree in the other case.

Let’s look at how these methods work. For the purposes of these discussions,
let:

W The matrix we are taking the limit of.

n The size of the matrix.

2.1 Vargas’s

This calculation method handles the multiple unit eigenvalue situation. (The
easiest way to get into the multiple unit eigenvalue case, is to take a network
with multiple sinks, and replace the sinks columns with identity columns). The
formula is based upon this formula.

n1 = Number of unit eigenvalues

∆i(λ) = The ithderivative of the characteristic
polynomial, evaluated at λ.

W∞ = n1

n1∑
k=0

(−1)k n1!
(n1 − k)!

[
∆(n1−k)(λ)

∆n1(λ)
(λI −W )−k−1

]
λ=1

.

However, this form of the formula is not very conducive to computer calcu-
lations. Using the fact that a matrix satisfies its own characteristic polynomial,
Luis Vargas came up with the following derivation from this formula.

n1 = The number of unit eigenvectors
bi = The degree i piece of the characteristic polynomial of A

αk =
k−n+1∑

h=0

(k − h)!
(k − n1 + 1− h)!

bn−h

W∞ =
n−1∑

k=n1−1

αk Wn−k−1

This is the formula actually used in the software when we use Vargas’s
formula. In every instance thus tested, this gives the same result as any other
case. 2

2The calculations to find all eigenvalues is directly taken from numerical recipes in c.

2



2.2 Out of date

This algorithms come from old times in the code. They are here for kicks, but
should not be considered either safe, or effective. However they are interesting,
at the very least, for seeing what goes wrong using these techniques. Here they
are.

2.2.1 Pre-2000 Version

This code is part of the original limit matrix calculation code. In my defense,
I wasn’t paying a lot of attention to unusual cases at this time. Nor was I too
worried about unbalanced hierarchies. This case does not handle unbalanced
hierarchies, or sinks cases correctly. Other forms it should work correctly with.
This code is not the same form that existed at all times before 2000, however
it has many some similarities with that code. It is the closest remnant of that
code left in the system. The algorithm goes something like this.

1. Calculate the 512th power of the matrix. Call this startPower. We use
powerScale to do this. This rescales after each power multiplication. If
you have no sinks, this causes no problems.

2. If that power vanishes, consider it a hierarchy.

(a) If we are a hierarchy, start back with the initial super matrix.

(b) Keep taking large powers, until the matrix vanishes (this will happen
at the number levels in the hierarchy power).

(c) Return the power just before it vanishes as the limit matrix. This
only works for balanced hierarchies.

3. If that power didn’t vanish, start looking for convergence. Set nextPower
to startPower.

(a) Multiply nextPower, by the super matrix, and set nextPower to
this new next power. Then normalize the result matrix, and use that
as nextPower.

(b) Compare (without scaling) nextPower to startPower. If they are
close enough we have found a cycle 3. Average each power in the
cycle and return this as the limit matrix (notice the may only be one
matrix to average, i.e. cycle length one).

(c) If not cycling go back two steps, and start again. Do this n2 times.
If this never converges to a cycle, we simply return the zero matrix,
and give you a warning.

3This cycle may be of length one, i.e. we have already converged at the 512th power. The
assumption is that the 512th is large enough to get it to converge (which may not happen).

3



2.2.2 Pre-2001 Version

This name is a bit misleading, in that it was removed from the main code in early
2000, but since Pre-2000 was already taken, I used this name. This code is very
similar to the Pre-2000 code, except scaling is done to check for convergence,
but those scaled values are not stored. Here is the algorithm.

1. Compute a startPower, except do not normalize. The power we start
with is given by the starting power algorithm “see 2.4.3 on page 9”.

2. If startPower is zero, then we have a hierarchy.

(a) If we are a hierarchy, start back with the initial super matrix.

(b) Keep taking large powers, until the matrix vanishes (this will happen
at the number levels in the hierarchy power).

(c) Return the power just before it vanishes as the limit matrix. This
only works for balanced hierarchies.

3. If startPower is not zero, we have a network. Set nextPower = startPower×
W . If nextPower equals startPower, we have converged, and we just re-
turn nextPower as the limit matrix. If not, we go into the following:

(a) nextPower = nextPower ×W .

(b) Scale nextPower and W temporarily, and compare these two.

i. If they are not close return to previous step, using unscaled ver-
sions of these matrices for next matrix multiplication.

ii. If they are close, we have found a cycle. Normalize each of the
intermediate powers, and average them together to give the re-
sulting limit matrix. Notice that is only at the end that we
permanently normalize these results.

iii. If we have done this more than n2 times, there is no cycle, and
we give up. We return the zero matrix, and report an error.

2.3 Current

These are methods that handle all hierarchies, and networks without sinks cor-
rectly. They all disagree on networks with sinks, but that’s where the fun is
anyway.

2.3.1 Calculus type

This version is very similar to the last. The only difference is it adds identity
columns only if we had a hierarchy. Here is it layed out step by step.

1. If we don’t have a hierarchy, change nothing 4.
4We figure out if we have a hierarchy by computing W n, and seeing if it disappears. If it

does we have a hierarchy. If not, we do not.

4



2. If we have a hierarchy, replace all sink columns by identity columns.

3. Call the function SM limitNonHierarchy, “see 2.4.1 on page 8”.

2.3.2 Scaling By Scalar

This is a bizarre calculation that I came up with. The idea behind it is that
rather than scaling each column by a, perhaps different, number; I would scale
the whole matrix by a scalar (which is the largest of those scaling numbers).
This way it wouldn’t matter whether I did the scaling at the beginning, or at the
end of the calculations (since scalar multiplication is commutative). I wouldn’t
trust this one at all, but it is kind of fun to watch it. Here is the algorithm
for multiplying matrices A × B used (this also applies to raising matrices to
powers):

1. First calculate A×B.

2. Find the maximum column sum of A×B, and call this max.

3. Return 1
maxA×B.

With that, here is the actual algorithm.

1. If this is a hierarchy, replace any zero columns in W identity columns (i.e.
columns in an n×n matrix in the same place as the column we are looking
at). We check for a hierarchy by taking the Wn+1, and see if it is zero. If
so we have a hierarchy. If not we do not.

2. Start power sp is given by the starting power algorithm “see 2.4.3 on
page 9”.

3. Compute startPower = W sp (scaling by scalar), and set nextPower =
startPower.

4. Loop over the following steps up to 100n times.

(a) Compute nextPower = nextPower ×W .

(b) If this is the same as startPower, we have found a cycle. We average
all the intermediate ones, and return that as the limit matrix.

(c) If not, and we have done this less than n times, go back two steps,
and start again.

(d) If not, and we have done this n times, break out of this loop.

5. Set startPower to the last power calculated, and go back into the previous
loop. Do this at most 100n times.

6. If we make it here, we never converged. Warn us that something went
wrong, and return the zero matrix.

5



2.3.3 New Hierarchy

These two functions are the latest variants of our limit matrix calculations.
They came into existence because we wanted to have intermediate synthesis
information in the limit matrix for hierarchies. The standard tricks to synthesize
using the limit matrix do not give this information, so a new algorithm had to
be constructed. The new algorithm is:

1. Separate the network into hierarchy and non-hierarchy parts. This is done
in the following way.

(a) Any zero columns in the matrix come from the hierarchy part. If
there are no zero columns we are done.

(b) Remove the columns (and their corresponding rows) from the matrix
(i.e. remove those nodes from the network).

(c) Feed the resulting matrix back into step one.

2. Once we know the hierarchy and non-hierarchy part, reorganize the super
matrix so that the last nodes are the ones from the hierarchy. The super
matrix looks like:

W =
(

A 0
C B

)
3. Renormalize the A and B matrices.

4. We compute A∞ using SM limitNonHierarchy, “see 2.4.1 on page 8”.

5. We compute B∞ using SM limitHierarchy, “see 2.4.2 on page 8”.

6. Here is where the two types of hierarchy calculations differ, in how they
compute the lower corner, LC, of the resulting limit matrix.

Without limit We compute the lower corner via the formula:

LC = C ×A∞ + B∞ × C

.
With limit We compute the lower corner recursively. The formula is:

LC0 = C

LCi+1 = LCi ×A∞ + B∞ × LCi

We wait for this to converge (if after n2 iterations, we don’t converge,
we give up and return LCn2). These matrices will get smaller and
smaller, in general, so we use a scaled comparison to check for con-
vergence (but we don’t store these scaled values). To get the final
lower corner, we do renormalize (but only at the last possible step).

7. Finally this information is put together in the following matrix:

W∞ =
(

A∞ 0
LC B∞

)
We then renormalize this matrix, just like any other matrix.

6



2.3.4 Identity At Sinks

This version of the calculation is straight forward.

1. Find all sink columns (zero columns), and replace them by identity columns.

2. Call the function SM limitNonHierarchy, “see 2.4.1 on page 8”.

2.3.5 Sinks formula

The sinks formula was the first approximation I came up with to handle sinks
differently than everyone else. There are two versions of this algorithm (straight
normalize) and (normalize limitB). These two use the same calculations, except
the normalize the limit matrix slightly differently. This algorithm does the
following.

1. Find all sinks in the network (all columns which are zero).

2. Reorganize the nodes so that these nodes are the last columns of the of
the matrix.

3. The matrix then has the form:

W =
(

B 0
A 0

)
Where B is the matrix for the part of the network without the sinks, and
A is how the network part connects to the sinks.

4. Normalize B.

5. We compute B∞ using the SM limitPowerNG function 5.

6. Then the limit matrix (before scaling) is given by:

W∞′ =
(

B∞ 0
A×B∞ 0

)
7. Then we scale, depending on the type of scaling chosen.

Straight Normalize This just normalizes W∞′ by each column by the
inverse of the column sum. This is the way I would normalize that
matrix if I had no other information on it.

Normalize limitB This normalizes the B∞ part of the limit matrix (i.e.
upper right hand corner). Since each column sum of B and A, when
added together, add to one, I use the same logic to make the column
sum of B∞ and A, when added together, add to on.

5In other words the Calculus type algorithm.

7



2.4 Common Algorithms

Many of these algorithms contain common algorithms in them (for instance the
Calculus type, and Identity at sinks). Here I would like to describe these.

2.4.1 Limit Non-Hierarchy

This algorithm handles non-hierarchies correctly. It will also handle sinks cor-
rectly (without putting identities in their place). The only thing this has prob-
lems is with hierarchies (i.e. things whose matrices W vanish after the nth

power). Here is the algorithm:

1. The starting power sp is given by the starting power algorithm “see 2.4.3
on page 9”.

2. We compute startPower = W sp.

3. We then enter the following loop (set nextPower = startPower)

(a) Compute the nextPower by doing nextPower = startPower ×W .

(b) Temporarily normalize nextPower and startPower, and compare
them (these scaled values are then immediately forgotten).

(c) If nextPower is the same as startPower, we have found a cycle
(perhaps of length one). Now normalize each matrix in the cycle,
and average them. Return this as the limit matrix.

(d) If nextPower is different from startPower, go back to the beginning
of this loop. If, however, we have done this n times, break out of this
loop and go on to the next step.

4. If we made it here, we haven’t found a cycle, so go back to the beginning
of the previous loop, with nextPower = the last power you computed.

5. If you go through the previous loop 100n times, give up. Give a warning,
and return the zero matrix.

2.4.2 Limit Hierarchy

This algorithm handles hierarchies correctly, and reports all intermediate syn-
thesis values as well. The algorithm is simple, and will only be applied to
hierarchies 6

1. Compute all powers of W , until it vanishes (if we have a hierarchy, the
maximum this could be is n). If it doesn’t vanish at n, then you didn’t
have a hierarchy, but it will stop there anyway.

2. Add up all of the powers from the previous step.

3. Normalize the resulting sum, and return this as the limit matrix.
6If it is applied to a non-hierarchy, it will just average W 1, W 2, ..., W n.

8



2.4.3 Starting Power

This is a cute little algorithm used in some limit matrix calculations to figure
what power to start looking for convergence at. It may change in the future, to
be more intelligent, however currently it does the following steps.

1. Let sp be the starting power we are looking for, for the matrix W .

2. First let sp = 10× n2.

3. Choose the next largest power of two, and let that be sp (we use largest
powers of two because matrix multiplication is more efficient that way).

4. If sp > 1024, let sp = 1024 (I don’t want starting powers getting out of
hand, altough this cut off may change later).

5. Check to see if W sp is zero as far as the computer is concerned (due to
round off).

6. If it was not zero, we have our starting power, and we stop here.

7. If it was zero, we then let sp = 15× n.

8. If sp > 256, we let sp = 256, and if sp < 32, we let sp = 32.

9. So if we made it here, 32 ≤ sp ≤ 256.

3 Pros and Cons

Some of these algorithms excel in certain cases, and do terribly in other cases.
Some do fair at all of them, and still others do poorly in most instances. I’d
like to outline the strengths and weaknesses of each algorithm. Beside each I
will give an overall score on a scale of one to ten.

Calculus Type (9.0) This algorithm is overall the best available. It handles
all cases, and gives meaningful answers.

Strengths Handles networks without sinks correctly. Also handles net-
works with sinks in a fairly meaningful way (which never gives bizarre
answers, like an alternative getting 100% for no reason). It does han-
dle all hierarchies correctly. However it will not give intermediate
hierarchy synthesized values.

Weaknesses Does not give intermediate hierarchy synthesized values.

Scaling By Scalar (8.5) This algorithm was designed on the spur of the mo-
ment. I had the idea to scale by scalars, instead of but matrix multiplica-
tion. That way it would be commutative. It appears to always work the
same as the calculus type, and for good reason. With a little work the
proof is straight-forward.

9



Strengths Same as Calculus Type. In addition it is rescaled always,
which makes some folks more comfortable.

Weaknesses Same as Calculus Type.

New Hierarchy (8.0) This algorithm exists to give intermediate results of
synthesis in the hierarchy case.

Strengths This algorithm gives the intermediate results for hierarchies.
It also handles networks without sinks correctly always. Also handles
degenerate hierarchy cases better than all other algorithms.

Weaknesses Its handling of networks with sinks is not at all canonical.
The algorithm does stand on its own merits, but the results don’t
always work with the logic I would like to see.

Identity at Sinks (7) This algorithm works the same as the calculus type in
the hierarchy case, and the network without sinks case. However if you
have a network with sinks, it puts self-loops on the sinks.

Strengths Works well in hierarchy, and network without sinks case.

Weaknesses Does not give intermediate synthesized values back in the
hierarchy case. Also in the network with sinks case, it places undo
emphasis on the alternatives. This can result in an alternative getting
100% in cases where it makes no sense (see the nuclear missile defense
model in our samples).

Sinks formula (6.5) This algorithm was the attempt just before the New Hi-
erarchy algorithm. It never gives completely bizarre results (as a matter
of a fact it tends to be very close to the Calculus Type algorithm). The
reason it gets such a low value is that it fails to handle unbalanced hier-
archies, because of weaknesses in the method of putting identity columns
at sinks for hierarchies.

Strengths Is an easy to understand algorithm. It seems to separate the
world into easy parts. It works fine with networks with sinks.

Weaknesses It does not handle unbalanced hierarchies correctly because
of the logic of adding ones to the diagonal of sinks 7 Another weakness
is in the logic of the algorithm. The New Hierarchy algorithm was
developed to repair this. However this weakness turns out to be
strength as well (since the simplifying assumption which bothers me,
makes the overall calculation easier). Oh yes, it also doesn’t give the
intermediate synthesis values for a hierarchy.

7For the B∞ part, it uses the Calculus Type algorithm, which adds ones to diagonals of
hierarchies. This causes our problems in unbalance hierarchy cases. However, if we used the
function SM limitNonHierarchy instead, this weakness would leave. Since this is mostly for
experimental purposes, this change will not be made anytime soon.

10



Pre-2001 Version (3) This algorithm is a fairly stable algorithm for handling
networks. It is not as sophisticated as the earlier mentioned ones. However
it does has some extreme shortcomings, which is why it is rated so low.

Strengths Handles networks, and pure hierarchies correctly (but not un-
balanced).

Weaknesses If the network has a hard time converging, this will bail be-
fore the other algorithms mentioned. It does not handle unbalanced
hierarchies correctly. It also doesn’t give the intermediate results for
a hierarchy of any kind.

Pre-2000 Version (2) This algorithm is all that is left of the first version of
the limit matrix calculation I first included in the code. It is juvenile, but
does work for networks without sinks, which was all I thought about at
that time.

Strengths Not many! It does handle networks without sinks correctly.

Weaknesses Every other case it will mess up. Never, ever trust this one!

4 Examples

To further explain these calculations, let us look at a few examples. These will
illustrate where various algorithms have their weaknesses, or strengths.

4.1 Balanced Hierarchy

The following is the super matrix for simple balanced hierarchy. This sample is
included in the sample models, with the name simple bal hier.mod.

goal cri2 crit1 alt1 alt2 alt3
goal 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
cri2 0.250000 0.000000 0.000000 0.000000 0.000000 0.000000
crit1 0.750000 0.000000 0.000000 0.000000 0.000000 0.000000
alt1 0.000000 0.657069 0.124307 0.000000 0.000000 0.000000
alt2 0.000000 0.196306 0.358558 0.000000 0.000000 0.000000
alt3 0.000000 0.146626 0.517135 0.000000 0.000000 0.000000


The following are the limit matrices found from each algorithm, with a brief

explanation of how they were found.

11



4.1.1 Calculus Type, and Identity at sinks

Both of the methods put self-loops on hierarchies, and then use the same algo-
rithm from there. So they both give the following limit matrix.

goal cri2 crit1 alt1 alt2 alt3
goal 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
cri2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
crit1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
alt1 0.257497 0.657069 0.124307 1.000000 0.000000 0.000000
alt2 0.317995 0.196306 0.358558 0.000000 1.000000 0.000000
alt3 0.424508 0.146626 0.517135 0.000000 0.000000 1.000000


Basically, both of these algorithms replace the zero columns with identity columns,
then take the limit matrix of that one. In this case they converge quickly, and
everything works out well. The only thing missing is the priority for cri1, cri2
with respect to goal.

4.1.2 Scaling By Scalar

This algorithm works the same as the Calculus Type in this case. The reason is
that it puts self-loops on the sinks, and then computes the limit matrix, scaling
using scalars. Since there all columns add to one here 8, there is no scaling to
do. The exact results it gives are:

W∞ =



goal cri2 crit1 alt1 alt2 alt3
goal 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
cri2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
crit1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
alt1 0.257497 0.657069 0.124307 1.000000 0.000000 0.000000
alt2 0.317995 0.196306 0.358558 0.000000 1.000000 0.000000
alt3 0.424508 0.146626 0.517135 0.000000 0.000000 1.000000


.

4.1.3 New Hierarchy

These two algorithms both give give the same answers for hierarchies always.
Their limit matrices look like:

goal cri2 crit1 alt1 alt2 alt3
goal 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
cri2 0.125000 0.000000 0.000000 0.000000 0.000000 0.000000
crit1 0.375000 0.000000 0.000000 0.000000 0.000000 0.000000
alt1 0.128749 0.657069 0.124307 0.000000 0.000000 0.000000
alt2 0.158998 0.196306 0.358558 0.000000 0.000000 0.000000
alt3 0.212254 0.146626 0.517135 0.000000 0.000000 0.000000


8After we add identity columns on the sinks, of course.

12



If you check under the goal column, this gives the same alternative priorities as
the previous methods. The only difference is we now have the information on
the priority of criteria with respect to the goal node.

This result was found, by raising the super matrix to larger powers, until it
vanishes. This one vanishes at the 3rd power. Then I simply add those powers
up, and rescale the resulting matrix. So I do:

W∞ = Normalize(W + W 2).

4.1.4 Sinks formula

These both give the same result in this case. Every alternative is a sink in this
case, so the A and B matrices from the algorithm are:

B =


goal cri2 crit1

goal 0.000000 0.000000 0.000000
cri2 0.250000 0.000000 0.000000
crit1 0.750000 0.000000 0.000000



A =


goal cri2 crit1

alt1 0.000000 0.657069 0.124307
alt2 0.000000 0.196306 0.358558
alt3 0.000000 0.146626 0.517135


When we use the standard limit matrix routine (used in the Calculus Type

routine), we get

B∞ =


goal cri2 crit1

goal 0.000000 0.000000 0.000000
cri2 0.250000 0.000000 0.000000
crit1 0.750000 0.000000 0.000000



A×B∞ =


goal cri2 crit1

alt1 0.257497 0.657069 0.124307
alt2 0.317995 0.196306 0.358558
alt3 0.424508 0.146626 0.517135



W∞ =



goal cri2 crit1 alt1 alt2 alt3
goal 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
cri2 0.125000 0.500000 0.000000 0.000000 0.000000 0.000000
crit1 0.375000 0.000000 0.500000 0.000000 0.000000 0.000000
alt1 0.128749 0.328534 0.062153 0.000000 0.000000 0.000000
alt2 0.158998 0.098153 0.179279 0.000000 0.000000 0.000000
alt3 0.212254 0.073313 0.258568 0.000000 0.000000 0.000000


4.1.5 Pre2001, and Pre2000 Version

Both of these algorithms work the same on hierarchies. They get lucky here
because this is a balanced hierarchy. They both take to power just before the

13



matrix vanishes, and return this as the limit. In this case this is the 2nd power.
The result they give is:

W∞ =



goal cri2 crit1 alt1 alt2 alt3
goal 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
cri2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
crit1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
alt1 0.257497 0.000000 0.000000 0.000000 0.000000 0.000000
alt2 0.317995 0.000000 0.000000 0.000000 0.000000 0.000000
alt3 0.424508 0.000000 0.000000 0.000000 0.000000 0.000000


4.2 Unbalanced Hierarchy

The next example is an unbalanced hierarchy (one where all paths from alter-
natives to goal are not the same length). It is basically the previous model with
some extra connections from the goal node directly to the alternatives. It can
be found in the file simple unbal hier.mod.The scaled super matrix follows:

W =



goal cri2 crit1 alt1 alt2 alt3
goal 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
cri2 0.125000 0.000000 0.000000 0.000000 0.000000 0.000000
crit1 0.375000 0.000000 0.000000 0.000000 0.000000 0.000000
alt1 0.360768 0.657069 0.124307 0.000000 0.000000 0.000000
alt2 0.092153 0.196306 0.358558 0.000000 0.000000 0.000000
alt3 0.047078 0.146626 0.517135 0.000000 0.000000 0.000000


.

Since this case is very similar to the last one, I will not give as much expla-
nation.

4.2.1 Calculus Type, and Identity at sinks

Both of the methods put self-loops on hierarchies, and then use the same algo-
rithm. The result they give is the following.

W∞ =



goal cri2 crit1 alt1 alt2 alt3
goal 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
cri2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
crit1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
alt1 0.489517 0.657069 0.124307 1.000000 0.000000 0.000000
alt2 0.251151 0.196306 0.358558 0.000000 1.000000 0.000000
alt3 0.259332 0.146626 0.517135 0.000000 0.000000 1.000000


Priorities =

(
alt1 alt2 alt3

0.48952 0.25115 0.25933

)

14



4.2.2 Scaling By Scalar

Works fine in this case. Since it puts self loops on the alternatives, there is no
scaling to worry about. Its results are:

W∞ =



goal cri2 crit1 alt1 alt2 alt3
goal 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
cri2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
crit1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
alt1 0.489517 0.657069 0.124307 1.000000 0.000000 0.000000
alt2 0.251151 0.196306 0.358558 0.000000 1.000000 0.000000
alt3 0.259332 0.146626 0.517135 0.000000 0.000000 1.000000


The priorities given are(

alt1 alt2 alt3
0.48952 0.25115 0.25933

)
4.2.3 New Hierarchy

As always with a hierarchy, these give all intermediate synthesis values as well.
Both versions give the same result in this case. The matrix is (this was arrived
at by doing Normalize(W + W 2), since W 3 is the first power that vanishes):

W∞ =



goal cri2 crit1 alt1 alt2 alt3
goal 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
cri2 0.083333 0.000000 0.000000 0.000000 0.000000 0.000000
crit1 0.250000 0.000000 0.000000 0.000000 0.000000 0.000000
alt1 0.326344 0.657069 0.124307 0.000000 0.000000 0.000000
alt2 0.167434 0.196306 0.358558 0.000000 0.000000 0.000000
alt3 0.172888 0.146626 0.517135 0.000000 0.000000 0.000000


The priorities are(

alt1 alt2 alt3
0.48952 0.25115 0.25933

)
4.2.4 Sinks Formula

This formula fails here because of the unbalanced nature of the system. The
reason can be seen by looking at the following matrices.

B∞ =

0.000000 0.000000 0.000000
0.250000 1.000000 0.000000
0.750000 0.000000 1.000000


A =

0.360768 0.657069 0.124307
0.092153 0.196306 0.358558
0.047078 0.146626 0.517135



15



Once we multiply these to give the lower corner, and normalize, we get:

W∞ =



goal cri2 crit1 alt1 alt2 alt3
goal 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
cri2 0.125000 0.500000 0.000000 0.000000 0.000000 0.000000
crit1 0.375000 0.000000 0.500000 0.000000 0.000000 0.000000
alt1 0.128749 0.328534 0.062153 0.000000 0.000000 0.000000
alt2 0.158998 0.098153 0.179279 0.000000 0.000000 0.000000
alt3 0.212254 0.073313 0.258568 0.000000 0.000000 0.000000


The priorities are(

alt1 alt2 alt3
0.25750 0.31800 0.42451

)
Which essentially forgets about the intermediate values. This is caused directly
by a flaw in this system, because the goal directly has priorities. Another flaw,
which would crop up in other unbalanced situations has to do with the flaw in
putting 1’s on the diagonal of sinks to do limit matrix calculations (for doing
the B∞ calculation). Please see the file simple unbal hier2.mod for an example.

4.2.5 Pre-2000 and Pre-2001 versions

Both run into the same problem as the Sinks formula in this case, although they
get at their answers in completely different ways. These simple notice the the
third power of the super matrix is where everything vanishes, so they return the
second power as the limit matrix. The matrix, and priorities they return are:

W∞ =



goal cri2 crit1 alt1 alt2 alt3
goal 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
cri2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
crit1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
alt1 0.257497 0.000000 0.000000 0.000000 0.000000 0.000000
alt2 0.317995 0.000000 0.000000 0.000000 0.000000 0.000000
alt3 0.424508 0.000000 0.000000 0.000000 0.000000 0.000000


The priorities which result are(

alt1 alt2 alt3
0.25750 0.31800 0.42451

)

4.3 Odd hierarchy

This is the first hierarchy given, except I add in a dummy alternative that
connects to nothing and from nothing. It is simply dead. The file is sim-
ple bal hier2.mod. There are two valid ways to think of the result you should
get.

16



• You should get the zero out for its priority, since he isn’t connected to
anything. He has no effect on anything, so he really ought to be zero.

• You should get 50% for him, since you know nothing about him, he gets
half, and the rest get half.

It turns out that the New Hierarchy, Sinks formula, and the Pre-2000, Pre-2001
versions all give former result. Whereas the rest give the latter. This tends to
make be believe in the New Hierarchy method more for hierarchies. I know this
is a degenerate case, but it is of some interest though.

4.4 Network with sinks 1

This is a trivial network with sinks. It has no really complicated structure, and
will give us a false sense of security, beware. Nonetheless it does differentiate
between some of the versions of these algorithms (in particular the Identity at
sinks and Calculus Type). It can be found in the file net sinks1.mod, and here
is its scaled super matrix.

co1− 1 co1− 2 co2− 1 co2− 2 a1 a2
co1− 1 0.000000 0.000000 0.218750 0.218750 0.000000 0.000000
co1− 2 0.000000 0.000000 0.031250 0.031250 0.000000 0.000000
co2− 1 0.666667 0.625000 0.000000 0.000000 0.000000 0.000000
co2− 2 0.166667 0.208333 0.000000 0.000000 0.000000 0.000000

a1 0.055556 0.133333 0.250000 0.675000 0.000000 0.000000
a2 0.111111 0.033333 0.500000 0.075000 0.000000 0.000000


4.4.1 Calculus Type

This algorithm will not put self-loops in. Instead it does a calculus type calcu-
lation. The result limit matrix, and priority vector are:

W∞ =



co1− 1 co1− 2 co2− 1 co2− 2 a1 a2
co1− 1 0.109375 0.109375 0.109375 0.109375 0.000000 0.000000
co1− 2 0.015625 0.015625 0.015625 0.015625 0.000000 0.000000
co2− 1 0.330729 0.330729 0.330729 0.330729 0.000000 0.000000
co2− 2 0.085938 0.085938 0.085938 0.085938 0.000000 0.000000

a1 0.201467 0.201467 0.201467 0.201467 0.000000 0.000000
a2 0.256866 0.256866 0.256866 0.256866 0.000000 0.000000


(

a1 a2
0.43956 0.56044

)
4.4.2 Scaling By Scalar

Again this gives exactly the same answer as the Calculus Type, including the
limit matrix. I believe this algorithm works out identically to the Calculus Type,
as these examples seem to indicate.

17



4.4.3 Identity At Sinks

This algorithm gives a fairly different answer. The reason is that those identities
at the sinks puts more emphasis on their structure, and less on the rest of the
network. The resulting values are:

W∞ =



co1− 1 co1− 2 co2− 1 co2− 2 a1 a2
co1− 1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
co1− 2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
co2− 1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
co2− 2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

a1 0.425948 0.521434 0.359471 0.784471 1.000000 0.000000
a2 0.574052 0.478566 0.640529 0.215529 0.000000 1.000000


(

a1 a2
0.52883 0.47717

)
4.4.4 New Hierarchy

Both of these algorithms give the same answer. You will notice that the limit
matrix is different for any of the previous two methods. However the priority
derived is the same as the Calculus Type.

W∞ =



co1− 1 co1− 2 co2− 1 co2− 2 a1 a2
co1− 1 0.198864 0.198864 0.087500 0.087500 0.000000 0.000000
co1− 2 0.028409 0.028409 0.012500 0.012500 0.000000 0.000000
co2− 1 0.180398 0.180398 0.079375 0.079375 0.000000 0.000000
co2− 2 0.046875 0.046875 0.020625 0.020625 0.000000 0.000000

a1 0.239762 0.239762 0.351652 0.351652 0.000000 0.000000
a2 0.305692 0.305692 0.448348 0.448348 0.000000 0.000000


(

a1 a2
0.43956 0.56044

)
4.4.5 Sinks formula

These two give the same priorities as the Calculus Type and the New Hierarchy,
but the limit matrices look different. Here they are:

18



For the straight normalize version

W∞ =



co1− 1 co1− 2 co2− 1 co2− 2 a1 a2
co1− 1 0.300000 0.300000 0.300000 0.300000 0.000000 0.000000
co1− 2 0.042857 0.042857 0.042857 0.042857 0.000000 0.000000
co2− 1 0.272143 0.272143 0.272143 0.272143 0.000000 0.000000
co2− 2 0.070714 0.070714 0.070714 0.070714 0.000000 0.000000

a1 0.138149 0.138149 0.138149 0.138149 0.000000 0.000000
a2 0.176137 0.176137 0.176137 0.176137 0.000000 0.000000


(

a1 a2
0.43956 0.56044

)
For the normalize limitB part we get

W∞ =



co1− 1 co1− 2 co2− 1 co2− 2 a1 a2
co1− 1 0.236979 0.236979 0.236979 0.236979 0.000000 0.000000
co1− 2 0.033854 0.033854 0.033854 0.033854 0.000000 0.000000
co2− 1 0.214974 0.214974 0.214974 0.214974 0.000000 0.000000
co2− 2 0.055859 0.055859 0.055859 0.055859 0.000000 0.000000

a1 0.201467 0.201467 0.201467 0.201467 0.000000 0.000000
a2 0.256866 0.256866 0.256866 0.256866 0.000000 0.000000


(

a1 a2
0.43956 0.56044

)
4.4.6 Others

The last two, Pre-2001 Version, Pre-2000 Version all give the same results as
the Calculus Type in this case (both for priority, and actual limit matrix).

4.5 Network with sinks 2

This is the same network as the last one, except I will connect the alternatives
back to the criteria co2-2, co2-1. Then I will add a sink alternative too. This
one shows the first truly odd behavior of the identity at sinks model, where
certain things get 100% even though they don’t appear that they should. It
also points out odd behavior in other algorithms as well. This network can be
found in net sinks2.mod, its super matrix is:

co1− 1 co1− 2 co2− 1 co2− 2 a1 a2 sink
co1− 1 0.000000 0.000000 0.218750 0.218750 0.000000 0.000000 0.000000
co1− 2 0.000000 0.000000 0.031250 0.031250 0.000000 0.000000 0.000000
co2− 1 0.666667 0.625000 0.000000 0.000000 0.800000 0.333333 0.000000
co2− 2 0.166667 0.208333 0.000000 0.000000 0.200000 0.666667 0.000000

a1 0.055556 0.133333 0.250000 0.572034 0.000000 0.000000 0.000000
a2 0.111111 0.033333 0.500000 0.063559 0.000000 0.000000 0.000000

sink 0.000000 0.000000 0.000000 0.114407 0.000000 0.000000 0.000000



19



4.5.1 Calculus Type

This method gives an interesting answer. The result is:

co1− 1 co1− 2 co2− 1 co2− 2 a1 a2 sink
co1− 1 0.108227 0.108227 0.108227 0.108227 0.108227 0.108227 0.000000
co1− 2 0.015461 0.015461 0.015461 0.015461 0.015461 0.015461 0.000000
co2− 1 0.301472 0.301472 0.301472 0.301472 0.301472 0.301472 0.000000
co2− 2 0.182712 0.182712 0.182712 0.182712 0.182712 0.182712 0.000000

a1 0.192062 0.192062 0.192062 0.192062 0.192062 0.192062 0.000000
a2 0.178707 0.178707 0.178707 0.178707 0.178707 0.178707 0.000000

sink 0.021360 0.021360 0.021360 0.021360 0.021360 0.021360 0.000000


(

a1 a2 sink
0.48979 0.45574 0.05447

)
4.5.2 Scaling By Scalar

Once again this gives exactly the same answer as the Calculus Type, including
the limit matrix.

4.5.3 Identity At Sinks

This algorithm makes the sink node into 100%, because of the artificial self-loop.
Here is the limit matrix, and priority it comes up with.

co1− 1 co1− 2 co2− 1 co2− 2 a1 a2 sink
co1− 1 0.000015 0.000015 0.000015 0.000014 0.000015 0.000015 0.000000
co1− 2 0.000002 0.000002 0.000002 0.000002 0.000002 0.000002 0.000000
co2− 1 0.000042 0.000042 0.000042 0.000038 0.000042 0.000041 0.000000
co2− 2 0.000026 0.000026 0.000026 0.000023 0.000026 0.000025 0.000000

a1 0.000027 0.000027 0.000027 0.000024 0.000027 0.000026 0.000000
a2 0.000025 0.000025 0.000025 0.000023 0.000025 0.000024 0.000000

sink 0.999862 0.999862 0.999862 0.999876 0.999862 0.999868 1.000000


(

a1 a2 sink
0 0 1

)
Notice that this is when the limit power error is set to 1.0 × 1006, if you set it
smaller, you will lose those trailing decimal places.

4.5.4 New Hierarchy

Both versions give the same result. It is an odd result, because the sink node
gets most of the information, however there is still some information left in the

20



ratios of the other two. The result limit matrix, and priorities are:

co1− 1 co1− 2 co2− 1 co2− 2 a1 a2 sink
co1− 1 0.056095 0.056095 0.056095 0.052692 0.056095 0.056095 0.000000
co1− 2 0.008014 0.008014 0.008014 0.007527 0.008014 0.008014 0.000000
co2− 1 0.153491 0.153491 0.153491 0.144178 0.153491 0.153491 0.000000
co2− 2 0.091167 0.091167 0.091167 0.085635 0.091167 0.091167 0.000000

a1 0.101445 0.101445 0.101445 0.095290 0.101445 0.101445 0.000000
a2 0.089788 0.089788 0.089788 0.084341 0.089789 0.089789 0.000000

sink 0.500000 0.500000 0.500000 0.530337 0.500000 0.500000 0.000000


(

a1 a2 sink
0.14462 0.12800 0.72737

)
4.5.5 Sinks formula (straight normalize)

This result is similar to the Calculus Type (where the sink gets little priority).
However there are some differences.



co1− 1 co1− 2 co2− 1 co2− 2 a1 a2 sink
co1− 1 0.109898 0.109898 0.109898 0.109898 0.109898 0.109898 0.000000
co1− 2 0.015700 0.015700 0.015700 0.015700 0.015700 0.015700 0.000000
co2− 1 0.300709 0.300709 0.300709 0.300709 0.300709 0.300709 0.000000
co2− 2 0.178608 0.178608 0.178608 0.178608 0.178607 0.178607 0.000000

a1 0.198745 0.198745 0.198744 0.198744 0.198745 0.198745 0.000000
a2 0.175908 0.175908 0.175907 0.175907 0.175908 0.175908 0.000000

sink 0.020434 0.020434 0.020434 0.020434 0.020434 0.020434 0.000000


(

a1 a2 sink
0.50304 0.44524 0.05171

)
4.5.6 Sinks formula (normalize limitB)

This is the first cases where the sinks formulae differ from each other (although
only many decimal places out). Here is the output it gives.

co1− 1 co1− 2 co2− 1 co2− 2 a1 a2 sink
co1− 1 0.109850 0.109850 0.109850 0.109850 0.109850 0.109850 0.000000
co1− 2 0.015693 0.015693 0.015693 0.015693 0.015693 0.015693 0.000000
co2− 1 0.300578 0.300578 0.300578 0.300578 0.300578 0.300578 0.000000
co2− 2 0.178530 0.178530 0.178530 0.178530 0.178530 0.178530 0.000000

a1 0.198658 0.198658 0.198658 0.198658 0.198658 0.198658 0.000000
a2 0.175831 0.175831 0.175831 0.175831 0.175831 0.175831 0.000000

sink 0.020860 0.020860 0.020860 0.020860 0.020860 0.020860 0.000000


(

a1 a2 sink
0.50249 0.44475 0.05726

)

21



4.5.7 Pre-2001 Version

This one gives the same as the Calculus Type now that I have changed the
starting power algorithm. Before that point it would not converge.

4.5.8 Pre-2000 Version

Since this version always starts with the 512th power, we are in good shape with
it. It will converge, and gives different results than everyone else too. Here they
are:

co1− 1 co1− 2 co2− 1 co2− 2 a1 a2 sink
co1− 1 0.000000 0.000000 0.218750 0.218750 0.000000 0.000000 0.000000
co1− 2 0.000000 0.000000 0.031250 0.031250 0.000000 0.000000 0.000000
co2− 1 0.666667 0.625000 0.000000 0.000000 0.800000 0.333333 0.000000
co2− 2 0.166667 0.208333 0.000000 0.000000 0.200000 0.666667 0.000000

a1 0.055556 0.133333 0.250000 0.572034 0.000000 0.000000 0.000000
a2 0.111111 0.033333 0.500000 0.063559 0.000000 0.000000 0.000000

sink 0.000000 0.000000 0.000000 0.114407 0.000000 0.000000 0.000000


(

a1 a2 sink
0.48873 0.45732 0.05395

)

5 Priority Calculations

Just thought I’d mention how priority vectors are found from the limit matrix.
It is simple. I average all goal columns together. A goal column, is the column
of a node which has connections from it, but none going to it (except possibly
a self connection).

If there are no goal columns, then I average all non-zero, non-identity columns
(an identity column is a zero column, except it has a 1 on the diagonal).

22


